Interrogation de Spécialité Mathématiques (55 min)

(Calculatrice autorisée)

Dans une ville, une enseigne de banque nationale possède deux agences, appelées X et Y. D'une année sur l'autre, une partie des fonds de l'agence X est transférée à l'agence Y, et réciproquement. De plus, chaque année, le siège de la banque transfère une certaine somme à chaque agence.

Soit n un entier naturel. On note x_n la quantité de fonds détenue par l'agence X, et y_n la quantité de fonds détenue par l'agence Y au 1^{er} janvier de l'année 2014 + n, exprimées en millions d'euros.

On note U_n la matrice $\begin{pmatrix} x_n \\ y_n \end{pmatrix}$ et on note $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

On suppose que le 1^{er} janvier de l'année 2014, l'agence X possède 50 millions d'euros et l'agence Y possède 10 millions d'euros.

L'évolution de la quantité de fonds est régie par la relation suivante :

$$U_{n+1} = AU_n + B$$
, où $A = \begin{pmatrix} 0.6 & 0.15 \\ 0.2 & 0.4 \end{pmatrix}$ et $B = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$.

- 1. Interpréter dans le contexte de l'exercice le coefficient 0,6 de la matrice A et le coefficient 3 de la matrice B.
- **2.** Donner la matrice U_0 puis calculer la quantité de fonds détenue par chacune des agences X et Y en 2015, exprimée en millions d'euros.
- **3.** On note $D = \begin{pmatrix} 0.3 & 0 \\ 0 & 0.7 \end{pmatrix}$, $P = \begin{pmatrix} 1 & 3 \\ -2 & 2 \end{pmatrix}$ et $Q = \begin{pmatrix} 0.25 & -0.375 \\ 0.25 & 0.125 \end{pmatrix}$.
 - a. Donner sans détailler le calcul, la matrice PDQ.
 - **b.** Expliciter le calcul du coefficient de la première ligne et de la deuxième colonne du produit matriciel QP. Dans la suite, on admettra que QP = I.

On admettra dans la suite de cet exercice que pour tout entier naturel non nul n, $A^n = PD^nQ$.

- **4.** On pose pour tout entier naturel n, $V_n = U_n {5 \choose 20/3}$.
 - **a.** Démontrer que pour tout entier naturel n, $V_{n+1} = AV_n$.
 - **b.** Déterminer V_0 puis pour tout entier naturel n, donner l'expression de V_n en fonction de A, n et V_0 .
- 5. Soit n un entier naturel. On admet que

$$A^{n} = \begin{pmatrix} 0.25 \times 0.3^{n} + 0.75 \times 0.7^{n} & 0.375 (-0.3^{n} + 0.7^{n}) \\ 0.5 (-0.3^{n} + 0.7^{n}) & 0.75 \times 0.3^{n} + 0.25 \times 0.7^{n} \end{pmatrix}.$$

- a. Déterminer le coefficient de la première ligne de la matrice V_n en détaillant les calculs
- **b.** En déduire l'expression de x_n en fonction de n.
- **c.** Déterminer la limite de x_n quand n tend vers $+\infty$ et interpréter ce résultat dans le cadre du problème.