Interrogation de Mathématiques (55 min.)

(Calculatrice autorisée)

Exercice 1 (9 points)

Donner une expression, la plus simple possible, de la fonction dérivée de chacune des fonctions suivantes : (Indiquer les formules utilisées)

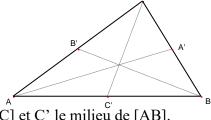
1°)
$$f(x) = 4x^4 - \frac{2}{3}x^3 + 5x - \frac{1}{3}$$
 sur **R**.

2°)
$$g(x) = 6\sqrt{x} - \frac{4}{x} + \frac{1}{x^2} + 2\sqrt{6} \text{ sur }]0 ; +\infty[.$$

3°)
$$h(x) = \frac{1}{2x+3} \text{ sur }]-3/2; +\infty[.$$

4°)
$$i(x) = x^3 \sqrt{x} \text{ sur }]0; +\infty[.$$

5°)
$$j(x) = \frac{x^3 + 1}{x^4 + 1}$$
 sur **R**.


Exercice 2 (7 points)

Dans un triangle ABC, on note:

$$a = BC$$
, $b = AC$ et $c = AB$.

$$\hat{A} = \widehat{BAC}, \ \hat{B} = \widehat{ABC} \text{ et } \hat{C} = \widehat{ACB}.$$

A' le milieu de [BC], B' le milieu de [AC] et C' le milieu de [AB].

Indiquer les formules utilisées.

On donnera, pour chaque longueur, la valeur exacte et une valeur approchée à 10⁻² près.

- 1°) Sachant que AB = 6, BC = 10 et $\hat{B} = 30^{\circ}$, calculer AC.
- 2°) Sachant que AB = 6, AC = 8 et BC = 12, calculer Â. (On indiquera la valeur exacte de cos Â)
- 3°) Sachant que AB = 6, $\hat{A} = 15^{\circ}$ et $\hat{B} = 30^{\circ}$, calculer AC.

Exercice 3 (4 points)

En remarquant que $\frac{\pi}{3} - \frac{\pi}{4} = \frac{\pi}{12}$,

calculer les valeurs exactes du cosinus et du sinus de $\frac{\pi}{12}$.

(Rappeler les formules utilisées)