DEVOIR de Mathématiques (1h50)

(Calculatrice autorisée)

Exercice 1. (10 points)

Un joueur débute un jeu au cours duquel il est amené à faire successivement plusieurs parties.

La probabilité que le joueur perde la première partie est de 0,2.

Le jeu se déroule ensuite de la manière suivante :

- s'il gagne une partie, alors il perd la partie suivante avec une probabilité de 0,05;
- s'il perd une partie, alors il perd la partie suivante avec une probabilité de 0,1.

On appelle:

- E₁ l'évènement « le joueur perd la première partie » ;
- E₂ l'évènement « le joueur perd la deuxième partie » ;
- E₃ l'évènement « le joueur perd la troisième partie ».

On appelle *X* la variable aléatoire qui donne le nombre de fois où le joueur perd lors des trois premières parties.

- 1. Après avoir construit un arbre pondéré :
- **a.** Donner les valeurs prises par X.
- **b.** Montrer que la probabilité de l'évènement (X = 2) est égale à 0,031 et que celle de l'évènement (X = 3) est égale à 0,002.
- **c.** Déterminer la loi de probabilité de *X*.
- **d.** Calculer l'espérance de *X*.
- **2.** Pour tout entier naturel n non nul, on note E_n l'évènement : « le joueur perd la n-ième partie », $\overline{E_n}$ l'évènement contraire, et on note p_n la probabilité de l'évènement E_n .
- **a.** Exprimer, pour tout entier naturel n non nul, les probabilités des évènements $E_n \cap E_{n+1}$ et $\overline{E_n} \cap E_{n+1}$ en fonction de p_n .
- **b.** En déduire que $p_{n+1} = 0.05$ $p_n + 0.05$ pour tout entier naturel n non nul.
- **3.** On considère la suite (u_n) définie pour tout entier naturel n non nul par :

$$u_n=p_n-\frac{1}{19}.$$

- **a.** Montrer que (u_n) est une suite géométrique dont on précisera la raison et le premier terme.
- **b.** En déduire, pour tout entier naturel n non nul, u_n puis p_n en fonction de n.
- **c.** Calculer la limite de p_n quand n tend vers $+\infty$.

Exercice 2. (10 points)

Partie A

Soit u la fonction définie sur]0; $+\infty[$ par :

$$u(x) = x^2 - 2 + \ln x$$
.

- **1.** Étudier les variations de u sur]0; $+\infty[$ et préciser ses limites en 0 et en $+\infty$.
- **2. a.** Montrer que l'équation u(x) = 0 admet une solution unique sur]0; $+\infty[$. On note α cette solution.
- **b.** À l'aide de la calculatrice, déterminer un encadrement d'amplitude 10^{-2} de α .
- **3.** Déterminer le signe de u(x) suivant les valeurs de x.
- **4.** Montrer l'égalité : ln $\alpha = 2 \alpha^2$.

Partie B

On considère la fonction f définie et dérivable sur]0 ; $+\infty[$ par

$$f(x) = x^2 + (2 - \ln x)^2$$
.

On note f' la fonction dérivée de f sur]0; $+\infty[$.

- **1.** Exprimer, pour tout x de]0; $+\infty[$, f'(x) en fonction de u(x).
- **2.** En déduire les variations de f sur]0; $+\infty[$.

Partie C

Dans le plan rapporté à un repère orthonormé (O; \vec{i} , \vec{j}), on note :

- \bullet (Γ) la courbe représentative de la fonction ln (logarithme népérien) ;
- A le point de coordonnées (0; 2);
- M le point de (Γ) d'abscisse x appartenant à]0; $+\infty[$.
- **1.** Montrer que la distance AM est donnée par AM = $\sqrt{f(x)}$.
- **2.** Soit g la fonction définie sur]0; $+\infty$ [par $g(x) = \sqrt{f(x)}$.
- **a.** Montrer que les fonctions f et g ont les mêmes variations sur]0; $+\infty[$.
- **b.** Montrer que la distance AM est minimale en un point de (Γ) , noté P, dont on précisera les coordonnées.
- **c.** Montrer que AP = $\alpha \sqrt{1 + \alpha^2}$.
- **3.** Pour cette question, toute trace de recherche, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

La droite (AP) est-elle perpendiculaire à la tangente à (Γ) en P?