Interrogation de Mathématiques (55 min.)

(Calculatrice autorisée)

Exercice 1 (10 points)

Une machine fabrique des pièces de calibre 12. Afin de vérifier la fiabilité de cette machine, on effectue un prélèvement de 500 pièces à la sortie de cette machine, voici la série statistique $(x_i; n_i)$ obtenue.

x_i : longueur	11,5	11,7	11,8	11,9	12,0	12,1	12,2	12,3	12,4	12,6
n_i : effectif	2	7	40	82	130	112	82	32	11	2

- 1°) a) Après avoir rappelé les formules, calculer la moyenne \bar{x} , la variance v, et l'écart-type σ de la série statistique. (On donnera des valeurs approchées à 10^{-3} si nécessaire)
 - **b**) Déterminer la médiane Me et les quartiles Q_1 et Q_3 . (expliquer)
 - c) Représenter le diagramme en boîte (« boîte à moustache ») de la série statistique (x_i ; n_i).
- **2**°) On estime que la machine est bien réglée si les trois conditions suivantes sont vérifiées :
 - $11.05 < \bar{x} < 12.05$
 - $\sigma < 0.17$
 - Au moins 95% des valeurs sont dans l'intervalle $[\bar{x} 2\sigma; \bar{x} + 2\sigma]$

La machine est-elle bien réglée ? (justifier)

Exercice 2 (2 points)

Soit $\alpha \in \left[\frac{\pi}{2}; \pi\right]$ tel que : $\sin \alpha = 0.6$. Calculer $\cos \alpha$

Exercice 3 (8 points)

- 1°) Résoudre dans **R** puis dans $]-\pi$; π] l'équation : $\sin 2x = -\sin x$.
- **2°**) Résoudre dans $]-\pi$; π] l'inéquation : $4 \sin^2 x 3 \ge 0$.

Interrogation de Mathématiques (55 min.)

(Calculatrice autorisée)

Exercice 1 (10 points)

Une machine fabrique des pièces de calibre 12. Afin de vérifier la fiabilité de cette machine, on effectue un prélèvement de 500 pièces à la sortie de cette machine, voici la série statistique $(x_i; n_i)$ obtenue.

x_i : longueur	11,5	11,7	11,8	11,9	12,0	12,1	12,2	12,3	12,4	12,6
n_i : effectif	2	7	40	82	130	112	82	32	11	2

- 1°) a) Après avoir rappelé les formules, calculer la moyenne \bar{x} , la variance v, et l'écart-type σ de la série statistique. (On donnera des valeurs approchées à 10^{-3} si nécessaire)
 - **b**) Déterminer la médiane Me et les quartiles Q_1 et Q_3 . (expliquer)
 - c) Représenter le diagramme en boîte (« boîte à moustache ») de la série statistique (x_i ; n_i).
- 2°) On estime que la machine est bien réglée si les trois conditions suivantes sont vérifiées :
 - $11.05 < \bar{x} < 12.05$
 - $\sigma < 0.17$
 - Au moins 95% des valeurs sont dans l'intervalle $[\bar{x} 2\sigma; \bar{x} + 2\sigma]$

La machine est-elle bien réglée ? (justifier)

Exercice 2 (2 points)

Soit $\alpha \in \left[\frac{\pi}{2}; \pi\right]$ tel que : $\sin \alpha = 0.6$. Calculer $\cos \alpha$

Exercice 3 (8 points)

- 1°) Résoudre dans **R** puis dans $]-\pi$; π] l'équation : $\sin 2x = -\sin x$.
- **2°**) Résoudre dans $]-\pi$; π] l'inéquation : $4 \sin^2 x 3 \ge 0$.