DEVOIR de Mathématiques (1h50)

(Calculatrice autorisée)

Exercice 1 (9 points)

Le directeur d'une réserve marine a recensé 3 000 cétacés dans cette réserve au 1^{er} juin 2017. Il est inquiet car il sait que le classement de la zone en « réserve marine » ne sera pas reconduit si le nombre de cétacés de cette réserve descend en dessous de 2 000.

Une étude lui permet d'élaborer un modèle selon lequel, chaque année :

- entre le 1^{er} juin et le 31 octobre, 80 cétacés arrivent dans la réserve marine ;
- entre le 1^{er} novembre et le 31 mai, la réserve subit une baisse de 5% de son effectif par rapport à celui du 31 octobre qui précède.

On modélise l'évolution du nombre de cétacés par une suite (u_n) . Selon ce modèle, pour tout entier naturel n, u_n désigne le nombre de cétacés au 1^{er} juin de l'année 2017 + n. On a donc $u_0 = 3000$.

- **1.** Justifier que $u_1 = 2926$.
- **2.** Justifier que, pour tout entier naturel n, $u_{n+1} = 0.95u_n + 76$.
- 3. À l'aide d'un tableur, on a calculé les 8 premiers termes de la suite (u_n) . Le directeur a configuré le format des cellules pour que ne soient affichés que des nombres arrondis à l'unité.

	A	В	C	D	Е	F	G	Н	I
1	n	0	1	2	3	4	5	6	7
2	$u_{\rm n}$	3 000	2 926	2 856	2 789	2 725	2 665	2 608	2 553

Quelle formule peut-on entrer dans la cellule C2 afin d'obtenir, par recopie vers la droite, les termes de la suite (u_n) ?

- **4. a.** Démontrer que, pour tout entier naturel $n, u_n \ge 1520$.
 - **b.** Démontrer que la suite (u_n) est décroissante.
- **5.** On désigne par (v_n) la suite définie par, pour tout entier naturel n, $v_n = u_n 1$ 520.
 - **a.** Démontrer que la suite (v_n) est une suite géométrique de raison 0,95 dont on précisera le premier terme.
 - **b.** En déduire que, pour tout entier naturel n, $u_n = 1480 \times 0.95^n + 1520$.
 - **c.** Conjecturer la limite de la suite (u_n) .
- **6.** Recopier et compléter l'algorithme suivant pour déterminer l'année à partir de laquelle le nombre de cétacés présents dans la réserve marine sera inférieur à 2 000.

$$n \leftarrow 0$$

 $u \leftarrow 3000$
Tant que . . .
 $n \leftarrow .$. .
 $u \leftarrow .$.
Fin de Tant que

La notation « \leftarrow » correspond à une affectation de valeur, ainsi « $n \leftarrow 0$ » signifie « Affecter à n la valeur 0 ».

7. La réserve marine fermera-t-elle un jour ?

Si oui, déterminer en justifiant à l'aide de la calculatrice, l'année de la fermeture.

Exercice 2 (4 points)

Pour tout entier naturel n, on note P_n et Q_n les propositions suivantes :

- P_n : « L'entier $10^n 1$ est divisible par 9 »
- Q_n : « L'entier $10^n + 1$ est divisible par 9 »
- 1°) Démontrer que les propriétés P_n et Q_n sont héréditaires pour tout entier naturel n.
- 2°) Les propriétés P_n et Q_n sont-elles vraies pour tout entier naturel n? Justifier.

Exercice 3 (7 points)

1°) Soient les nombres complexes : z = 2 - i et z' = 1 + 3i, écrire les nombres complexes suivants sous forme algébrique :

a)
$$z_1 = z^2 + z^2$$
.

b)
$$z_2 = \frac{1}{z} - \overline{z'}$$
.

c)
$$z_3 = \frac{z+i}{z'+2}$$
.

2°) Résoudre dans C les équations suivantes (on donnera les résultats sous forme algébrique) :

a)
$$(E_1): (1+i)z+1=2z+i-1$$
.

b)
$$(E_2): 3z^2 + 2z + 1 = 0.$$

c)
$$(E_3): z^2 + 4\bar{z} = 3$$
.