Mercredi 16 janvier 2019

Term S₃

DEVOIR de Mathématiques (1h50)

(Calculatrice autorisée)

Exercice 1 (7 points)

Soit la fonction f définie sur **R** par : $f(x) = \cos(2x) + \sin^2(2x)$. On note C_f sa courbe représentative dans un repère orthonormal (unité graphique 2 cm.).

- 1°) Démontrer que f est de période π .
- 2°) Etudier la parité de f.
- **3**°) On note : $I = \left[0; \frac{\pi}{2}\right]$, expliquer comment obtenir la courbe C_f complète à partir d'un tracé sur I.
- **4°**) Factoriser f'(x) et justifier que, f'(x) est du signe de $\cos(2x) \frac{1}{2} \sin \left]0; \frac{\pi}{2}\right[$. En déduire les variations de f sur l'intervalle I puis dresser son tableau de variations complet sur I.
- **5**°) Tracer la courbe C_f sur l'intervalle $[-\pi; \pi]$.

Exercice 2 (7 points)

Soit la fonction f définie sur $\left[\frac{1}{2}; +\infty\right[$ par : $f(x) = \frac{6\sqrt{2x-1}}{x^2+1}$. On note C_f sa courbe représentative dans un repère orthonormal (unité graphique 2 cm.).

- 1°) Calculer la limite de f en +∞. Que peut-on en déduire pour la courbe (C_f)?
- **2**°) Etudier la dérivabilité de f en $x = \frac{1}{2}$. Que peut-on en déduire pour (C_f) ?
- 3°) Factoriser f'(x) et justifier que, f'(x) est du signe de (1-x) sur $\left|\frac{1}{2}; +\infty\right|$, En déduire les variations de f sur $\left[\frac{1}{2}; +\infty\right[$ puis dresser son tableau de variations complet.
- **4**°) Tracer la courbe $C_f \operatorname{sur} \left[\frac{1}{2}; +\infty\right[$.

Exercice 3 (6 points)

Un forain propose le jeu suivant :

Le joueur mise 4 € puis lance un dé à 6 faces, parfaitement équilibré.

- S'il obtient 1 ou 6, il tire alors une boule de l'urne numéro 1 qui contient 10 boules : 3 vertes et 7 rouges
- Sinon, il tire alors une boule de l'urne numéro 2 qui contient 10 boules : des noires et des rouges

Les gains sont alors les suivants :

- Tirage d'une boule verte : Gain de 10 €.
- Tirage d'une boule rouge : Gain de 5 €.
- Tirage d'une boule noire : Aucun gain.
- 1°) On note les événements suivants :

U₁ : « Tirer une boule de l'urne numéro 1 »

U₂: « Tirer une boule de l'urne numéro 2 »

V: « Tirer une boule verte »

R: « Tirer une boule rouge »

N: « Tirer une boule noire »

Modéliser les données de l'énoncé (et uniquement celles-ci) sur un arbre pondéré.

- 2°) Le forain annonce :

En déduire la probabilité de tirer une boule noire.

Combien y-a-t-il de boules de chaque couleur dans l'urne numéro 2 ?

 3°) Soit X la variable aléatoire égale au gain algébrique du joueur (mise déduite).

Déterminer la loi de probabilité de X et son espérance mathématique.

4°) Un joueur tente sa chance 10 fois de suite à ce jeu.

On note Y la variable égale au nombre de fois où il gagne lors de ces 10 parties.

- a) Quelle est la loi de probabilité suivie par Y?
- b) Déterminer la probabilité que le joueur gagne au moins une fois.
- c) Déterminer la probabilité que le joueur gagne exactement 5 fois.
- d) Quelle est l'espérance mathématique de Y?