Nom / Prénom :	$\mathrm{T}^{\circ}\mathrm{S}$
	Jeudi 31 janvier 2019

Interrogation de Spécialité Mathématiques

(Calculatrice autorisée)

Dans chaque cas, Indiquer si l'affirmation est Vrai (V) ou Fausse (F). (Bonne réponse : +0,5 point ; absence de réponse : 0 point ; mauvaise réponse : -0,5 point)

On considère des entiers relatifs a, b, u et v non nuls.

1°) Si $6a = 9b$, alors on peut affirmer que :	i) 6 divise b.
	ii) 9 divise a.
	iii) 3 divise a.
2 °) Si PGCD(a ; b) = 12, alors :	i) a et b sont pairs.
	ii) a^2 est divisible par 144.
	iii) PGCD (2a; 3b) = 72.
3 °) Si $a = 2^2 \times 7$ et PGCD $(a; b) = 14$, alors :	i) b ne peut pas être un multiple de 3.
	ii) b ne peut pas être un multiple de 4.
	iii) b peut être impair.
4 °) Si $3a + 5b = 1$, alors on peut affirmer que :	i) a et b sont premiers entre eux.
	ii) 3 et <i>b</i> sont premiers entre eux.
	iii) $PGCD(a; 5) = 1.$
5°) Si $7a - 11b = 5$, alors on peut affirmer que :	i) $PGCD(a; b) = 5.$
	ii) 5 divise PGCD(a; b).
	iii) PGCD(a; b) divise 5.
6°) Si $3a + 6b = -3$, alors on peut affirmer que :	i) a et b sont des multiples de 3.
	ii) a et b sont premiers entre eux.
	iii) $PGCD(3a; 6) = 1.$
7°) Si $au + bv = 3$ alors on peut affirmer que :	i) a et b ne sont pas premiers entre eux.
	ii) $PGCD(a; b) \in \{1; 3\}.$
	iii) <i>u</i> et <i>v</i> sont premiers entre eux.
8 °) On a : PGCD($a ; b$) = 12 et $a \ge b$.	i) 1128.
Si les quotients successifs obtenus dans le calcul	ii) 1524.
de ce PGCD par l'algorithme d'Euclide sont : 8, 2 et 7 ; alors la valeur de <i>a</i> est :	iii) 1728.
9°) Si PGCD(<i>b</i> ; 2016) = $2^4 \times 3^{\alpha} \times k$	i) $\alpha \leq 2$.
où k est un nombre entier, premier avec 2 et 3. On a donc :	ii) $b \ge 1000$.
	iii) $k = 7$.
10°) Si a est un nombre premier, alors on peut	i) il existe des entiers relatifs x et y tels
affirmer que :	que : $ax + by = 1$. ii) s'il existe des entiers relatifs x et y tels que : $ax + by = 1$, alors b est un nombre premier différent de a .
	iii) si b est un nombre premier différent de a , alors il existe des entiers relatifs x et y tels que : $ax + by = 1$.