DEVOIR (90 min)

Exercice 1 (14 points)

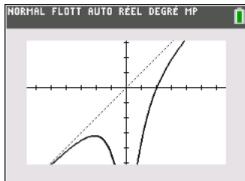
Partie A

Soit *g* la fonction définie sur **R** par : $g(x) = x^3 + 3x + 16$.

 1°) Etudier les variations de g.

2°) Démontrer que l'équation g(x) = 0 admet une unique solution α sur **R**, en donner une valeur approchée à 10^{-2} près.

 3°) En déduire le signe de g(x) en fonction de x.



Partie B

Soit f la fonction définie sur \mathbf{R} par :

$$f(0) = 0$$
 et $f(x) = \frac{x^4 - 8x}{x^3 + x}$ si $x \neq 0$.

La courbe (C_f) représentative de f et la droite (d) d'équation y = x sont représentées ci-contre :

1°) Valider ou réfuter, en justifiant, chacune des trois conjectures suivantes :

a) L'axe des ordonnées est une asymptote verticale à la courbe (C_f) .

b) La droite (*d*) est une asymptote oblique à la courbe en $+\infty$. C'est-à-dire que : $\lim_{x \to +\infty} f(x) - x = 0$.

c) Pour tout $x \ne 0$, on a : f(x) < x.

 2°) La fonction f est-elle continue en 0 ?

3°) Déterminer les limites de f en $-\infty$ et en $+\infty$.

4°) Montrer que pour tout $x \neq 0$, on a : $f'(x) = \frac{x g(x)}{(x^2 + 1)^2}.$

(On ne demande pas la dérivabilité en 0)

 5°) En déduire les variations de f et dresser son tableau de variation.

 6°) Montrer qu'il existe deux points de (C_f) où la tangente à la courbe est parallèle à la droite (d). (On donnera juste l'abscisse de ces deux points)

Exercice 2 (6 points)

Soit f la fonction définie sur \mathbf{R} par :

$$\begin{cases} f(x) = (x+2)^2 & \text{si } x < -1 \\ f(x) = \frac{3x+4}{x+2} & \text{si } -1 \le x \le 0 \\ f(x) = \sqrt{x+4} & \text{si } 0 < x \end{cases}$$

 1°) Montrer que f est continue sur \mathbf{R} .

 $\mathbf{2}^{\circ}$) f est-elle dérivable en -1 et en 0 ?

Déterminer les équations des tangentes (ou demi-tangentes) en ces points.