NOM et Prénom:	• • • • • • • • • • • • • • • • • • • •
Jeudi 29 septembre 2022	Term Spé Maths 4

Interrogation (55 min.)

(Calculatrice autorisée)

Exercice 1 (4 points)

1°) Soit u une suite arithmétique de premier terme $u_0 = 5$ et de raison r = 4.

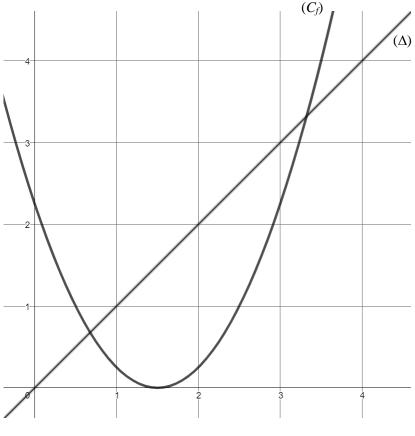
- a) Pour tout entier naturel n, donner une expression de u_n en fonction de n.
- b) Calculer u_{50} .
- c) Calculer : $S = u_0 + u_1 + ... + u_{50}$.

2°) Soit v une suite géométrique de premier terme $v_0 = 4$ et de raison q = 3.

- a) Pour tout entier naturel n, donner une expression de v_n en fonction de n.
- b) Calculer v_{10} .
- c) Calculer : $S' = v_0 + v_1 + ... + v_{10}$.

Exercice 2 (4 points)

Soit u la suite définie par : $u_0 = 3$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$


La courbe (C_f) est tracée ici, ainsi que la droite (Δ) : y = x.

- 1°) Expliquer en détail la méthode permettant d'obtenir les points A_1 , A_2 et A_3 d'abscisses respectives u_1 , u_2 et u_3 sur l'axe des abscisses à partir du point $A_0(u_0; 0)$ et des courbes (C_f) et (Δ) .
- 2°) Réaliser cette construction sur le graphique ci-contre.

(Laisser les traits de construction)

3°) La fonction f a pour équation : $f(x) = \left(x - \frac{3}{2}\right)^2.$

En déduire les valeurs exactes de u_1 , u_2 et u_3 .

Exercice 3 (4 points)

Soit *u* la suite définie sur **N** par : $u_0 = 1$ et pour tout entier naturel n, $u_{n+1} = 2$ $u_n + \frac{n}{2}$.

- **1**°) Démontrer par récurrence que, pour tout entier naturel n, on a : $u_n \ge 2^n$.
- **2**°) Que peut-on en déduire pour la limite de la suite u quand n tend vers $+\infty$?

Exercice 4 (8 points)

Déterminer, en justifiant, les limites suivantes :

$$1^{\circ}) \lim_{n \to +\infty} \frac{10}{n+1} - \sqrt{n}$$

2°)
$$\lim_{n\to+\infty} \frac{4-n^2}{n^2+4}$$

$$3^{\circ}) \lim_{n \to +\infty} n^3 - 3n^2 - 2\sqrt{n}$$

4°)
$$\lim_{n \to +\infty} \frac{3^n + 4}{4^n + 3}$$

$$5^{\circ}$$
) $\lim_{n \to +\infty} 1 + \frac{(-1)^n}{n+1}$